Archivo de la etiqueta: cuántica

La forma del átomo II

“Dios es capaz de crear partículas de distintos tamaños y formas… y quizás de densidades y fuerzas distintas, y de este modo puede variar las leyes de la naturaleza, y hacer nuevos mundos de tipos diferentes en partes diferentes del Universo. Yo por lo menos no veo esto nada contradictorio”, ISAAC NEWTON, Óptica

Los Simpson

El modelo planetario del átomo ha inspirado a generaciones de artistas y escritores de ciencia ficción a imaginar mundos dentro de otros mundos, en la que los átomos son diminutos sistemas solares que forman parte de una estructura cada vez mayor. Un ejemplo de ello es esta genial intro de un capítulo de Los Simpson.

Buckminster Fuller

No sólo la configuración elemental de la materia ha inspirado al arte. Una estructura arquitectónica conocida como cúpula geodésica, desarrollada por el ingeniero y visionario Richard Buckminster Fuller en 1954, dio nombre a un tipo de molécula formada por átomos de carbono llamada fulereno. Tanto la molécula como la cúpula geodésica comparten su forma esférica generada a partir de polígonos cuyos vértices coinciden con la superficie de una esfera. Este tipo de estructuras son extremadamente ligeras y estables debido a lo que Fuller calificó como tensegridad, esto es, el equilibrio entre fuerzas de tracción y compresión. Si quieren saber más sobre el legado de Buckminster Fuller, vean este magnífico reportaje de la CBS y no se pierdan su ‘espacial’ final con esta reflexión del arquitecto: “everyboy is an astronaut”.



Atomium

Cuandoel arquitecto André Waerkeyn recibió el encargo de construir un monumento para la Exposición Universal de Bruselas de1958, no dudó en diseñar una estructura atómica como símbolo de la era moderna. Compuesta por nueve esferas de acero de 18 metros de diámetro, representa la estructura de un cristal de hierro ampliado 165 mil millones de veces. Planeada para permanecer sólo seis meses, pronto se convirtió en una atracción turística y ha perdurado hasta la actualidad como un emblema de la ciudad de Bruselas.

A is For Atom

Poco después de la explosión de Hiroshima, los Estados Unidos iniciaron una campaña para promocionar el uso pacífico de la energía atómica. Para ello realizaron algunas películas de propaganda con el propósito de “humanizar” la figura del átomo. A is For Atom (1953) es un ejemplo de este esfuerzo. Se trata de una película educativa de animación producido por General Electric en la que los elementos aparecen como personas con cabeza de molécula y la energía nuclear como gigantes portadores de progreso para la humanidad. El film es una reliquia del pensamiento y de la animación americana de los años 50.

La hormiga atómica

Tras la explosión nuclear en Japón,  numerosos monstruos y superhéroes mutantes aparecieron en la ficción como metáfora del temor surgido por la nueva energía. Entre ellos, La Hormiga Atómica es un personaje de dibujos animados creado por la factoría de animación Hanna-Barbera en 1965. Se trata de una minúscula hormiga antropomórfica y parlante, poseedora de una gran fuerza y poder que obtiene de la exposición a la radiación a través de un “desintegrador de átomos” que se encuentra en su laboratorio. Su símbolo no podría ser otro que el modelo atómico de Bohr.

Doctor Manhattan

Dr. Manhattan es uno de los personajes principales del popular comic Watchmen, cuya acción transcurre en los años 80 en el marco de una inminente guerra nuclear entre Estados Unidos y la Unión Soviética. Tras sufrir un accidente durante un experimento de física para desintegrar los objetos en átomos individuales su cuerpo se vaporiza. Sin embargo, sus átomos vuelven a combinarse convertido en un superhéroe capaz de manipular la materia. Sus creadores se inspiraron en otro superhéreo  de los años 60 con iguales poderes llamado Capitán Átomo . A diferencia de aquel personaje, el Dr. Manhattan rechaza un uniforme con el símbolo del átomo de Bohr, que considera absurdo, y se graba en la frente el esquema de un átomo de hidrógeno.

Here Comes Science

They Might Be Giants es un grupo de música indie estadounidense formado en los 80. Desde 2005 han elaborado varios proyectos educativos para niños. Su último disco en 2009 está dedicado a la divulgación de la ciencia. Para ello han elaborado varios videoclips de animación donde explican con sencillez varios conceptos científicos, entre ellos, este brillante vídeo sobre la tabla periódica donde se da a entender cómo los elementos se ordenan según las propiedades físicas de sus átomos.

Cosmos

El popular astrónomo y divulgador de la ciencia Carl Sagan hizo una magistral descripción de los átomos y de los elementos químicos en el episodio 9 de su serie Cosmos sin mostrar ni una sola representación del modelo atómico. Si a él le sobraban las imágenes, a quienes nos dedicamos a la divulgación nos sobran las palabras para describir la genilidad del maestro.

Atom

Una de los mejores documentales sobre física cuántica. Realizado en 2007 por la BBC y presentado por el físico Jim Al-Khalili, posiblemente el nuevo Carl Sagan de la divulgación científica, está compuesto por tres episodios donde se explica cómo el descubrimiento del átomo ha cambiado nuestra comprensión del Universo.


Anuncios

Más allá de la Relatividad

“Un físico es el medio que tienen los átomo de pensar en los átomos”, Anónimo.

Vídeo de divulgación donde se explican dos de los descubrimientos que Albert Einstein publicó en el mismo año que su teoría de la relatividad: el movimiento browniano, que proporcionó pruebas de la existencia de los átomos; y el efecto fotoeléctrico, que supuso la explicación más exacta de la naturaleza de la luz, así como el premio Nobel de física para su autor. Realizado por Iván Jiménez

El siglo XX vio como se transformaba súbitamente la visión de la realidad. La física que nos había guiado desde los tiempos de Galileo a Newton dejó de tener sentido. Uno de los principales causantes de esta revolución fue Albert Einstein. Gracias a él se desarrollaron las dos piedras angulares en las que hemos reconstruido nuestra comprensión del Universo y la materia.

Por un lado, la Relatividad supuso un cambio radical en nuestro modo de ver el mundo cuando los objetos se mueven a gran rapidez o tienen una gran masa. Gracias a ella descubrimos que el espacio y el tiempo son curvos e inseparables, que el Universo había tenido un comienzo y que aún se está expandiendo. Pero, por otro lado, Einstein también proyectó el primer rayo de luz sobre una nueva rama de la física: la mecánica cuántica. Un nuevo marco para comprender el comportamiento de los átomos, el mundo de la luz, la electricidad y de todo lo que opera a las escalas más diminutas.

A cambio hemos tenido que pagar un precio muy alto: renunciar a las certezas y dejar la ciencia en manos de la probabilidad. El mundo de lo infinitamente pequeño representa una realidad ajena a nuestra experiencia cotidiana y sentido común. Simplemente no se puede comprender a base de símiles derivados de la experiencia humana. Sin embargo, sin ella no podemos comprender muchas cosas que de otro modo no habríamos podido conocer.

La mecánica cuántica no sólo es fascinante por sus insólitos planteamientos y sus extravagantes leyes, además ha servido para realizar las predicciones más precisas y eficaces de toda la historia de la ciencia. Predijo la posibilidad del láser, que hoy tiene múltiples aplicaciones, desde en ingeniería hasta los lectores de CD; ha ayudado a la optimización de nuevos medicamentos y materiales; o se ha utilizado como base para nuevos microscopios capaces de ver la forma de las propias moléculas.

Paradójicamente, Albert Einstein se negó a aceptar la teoría que él mismo había ayudado a crear y sostuvo, hasta su muerte, que la realidad debía estar acorde con ideas más intuitivas. Aunque siempre se cita su frase “Dios no juega a los dados”, sus palabras auténticas fueron: “parece difícil echarle un vistazo furtivo a las cartas de Dios. Pero que juegue a los dados y utilice métodos telepáticos… es algo que yo no puedo creer ni por un momento”.

Cuántica: la chistera de mago

Este vídeo nace de la necesidad urgente de divulgación hacia la sociedad de este campo del conocimiento ya que, recientemente, ha crecido la popularidad de la física cuántica entre muchas pseudociencias que han encontrado en la complejidad de esta disciplina la jerga y verborrea adecuada para dotar de base científica a sus absurdas pretensiones con el innegable intento de obtener credibilidad.

Nuestra imagen del mundo y de nosotros mismos se ha visto afectada por los descubrimientos científicos. Para algunos seguidores de la Nueva Era, creyentes en ovnis, astrólogos, homeópatas y amantes de las pulseras milagrosas la ciencia les ha arrebatado el misterio esencial de la vida. Pero, en realidad, la ciencia sólo ha ayudado a eliminar algunos mitos producto de la ignorancia. Por suerte, ya han pasado los tiempos en el que las enfermedades eran resultado de maldiciones, o cuando la Tierra era el centro del Universo y los rayos, instrumentos de los dioses.

La ciencia no tiene respuestas a todos las preguntas, pero su realidad está abrumadoramente respaldada por las pruebas experimentales, lo que supone una evidencia muy importante de la existencia de unas leyes que, aún fuera de nuestra experiencia directa, nos sirven para comprender y prever el funcionamiento de la Naturaleza. Esto no significa que las respuestas sean ciertas y que el científico tenga la verdad.  Sea como sea, la ciencia, en su intento de dar solución a las grandes preguntas de la humanidad, nos ha proporcionado un conjunto de nuevos misterios igual de profundos e interesantes. Y eso es lo verdaderamente estimulante del conocimiento científico.

Cuando existen preguntas que la ciencia no puede responder pasan a formar parte del dominio de las creencias y las religiones. Estas son perfectamente respetables y forman parte de la propia naturaleza humana, pero todavía ninguna forma de fe ha sido suficiente para demostrar algún milagro, al menos que, como decía David Hume “el testimonio sea de tal categoría que su falsedad sea más milagrosa que los hechos que se propone establecer”. O lo que es lo miso, como simplificó el excelente divulgador Carl Sagan, “las afirmaciones extraordinarias precisan pruebas extraordinarias”.

Para finalizar, no está de más compartir el legítimo consejo de Bertrand Russell: “No es conveniente creer una proposición cuando no hay base alguna que sugiera que es cierta”. Espero que el vídeo trasmita al espectador algún ejemplo de lo fascinante y sorprendente que puede ser la ciencia.

Ver también:

“Viaje a la Relatividad” (Vídeo sobre la teoría especial y general de la Relatividad)

Entrevista a Juan Ignacio Cirac

Instituto Max Planck de Óptica Cuántica de Alemania

A pesar de ser habitantes de un mundo a medio camino entre las enormes distancias cósmicas y las microscópicas de los átomos, esos extremos nos atraen. Por un lado creamos instrumentos para observar las fronteras del universo conocido y por otro nos adentramos en el límite de lo muy pequeño, hasta crear dispositivos minúsculos capaces de almacenar información. Pero, en esa carrera hacia lo cada vez más pequeño nos encontramos con una frontera, si cruzamos al otro lado comprobamos que ya no rigen las mismas leyes, hemos entrado en el territorio de la mecánica cuántica. Aquí la realidad parece cambiar, nos enfrentamos con fenómenos que contradicen nuestro sentido común, es el reino de la paradoja. Si aplicamos todo esto al campo de la informática, nos hallamos a las puertas de una nueva disciplina: la computación cuántica. Este es el terreno en el que desarrolla su investigación Juan Ignacio Cirac, galardonado recientemente con el Premio Príncipe de Asturias de Investigación Científica y Técnica. Este joven físico, director del Instituto Max Planck de Óptica Cuántica de Alemania, nos habla en esta entrevista del presente y el futuro de esta nueva rama del conocimiento.

¿Qué le motivó a estudiar computación cuántica?

Llevo trabajando con la física cuántica desde que estudié la carrera. Hice una tesis sobre ella y en 1994, cuando surgió la computación cuántica gracias a los resultados obtenidos por un americano, me sentí atraído por el tema y empecé a trabajar con un equipo.

¿Cuál es el problema de la computación clásica? ¿Hasta donde hemos llegado y por qué resulta necesaria una nueva computación basada en las propiedades de lo muy pequeño?

Los ordenadores van cada vez más rápido. Los chips almacenan tanta información que al final el elemento de información más elemental serán los átomos. Dentro de unos años llegaremos al mundo microscópico. En ese momento la mecánica cuántica será una necesidad. Simplificando, podemos decir que la computación cuántica utiliza la mecánica cuántica de los sistemas microscópicos para hacer las cosas más rápidas y mejor.

¿Qué distingue esencialmente la información cuántica de la clásica?

En la información clásica la unidad de información es el bit. En la computación cuántica todo se almacena en términos de qubits o bits cuánticos que, a demás de tener los valores 0 y 1, pueden tener valores intermedios de superposición, es decir, ser a la vez O y 1.

¿Cuál es el principal escollo que se interpone en la realización de un ordenador cuántico?

El problema es que no podemos controlar y manejar bien esos sistemas tan pequeños. Hay que aislarlos y manipularlos con láseres que no son perfectos. No disponemos de la herramienta adecuada.

Al leer el resultado, una vez realizado el cálculo, ¿no estaríamos, de algún modo, interfiriendo según el Principio de Incertidumbre?

Los algoritmos cuánticos están hechos de tal forma que la probabilidad de obtener un resultado correcto es muy alta. Así que se mide, se obtiene un resultado y si no es correcto se vuelve a repetir hasta que es el adecuado.

Si el ordenador cuántico no puede ser construido a partir del transistor clásico, ¿cómo será el hardware de la computación cuántica?

No sabemos cómo va a ser el hardware definitivo, pero sí hay prototipos basado en sistemas atómicos en los cuales se tiene un conjunto de 20 o 30 átomos, iluminados con luz láser, y cada uno de ellos almacena información.

¿La computación cuántica depende del desarrollo de la nanotecnología y su capacidad de manipular estructuras atómicas?

Está muy relacionada. La computación cuántica necesita dominar el mundo microscópico y eso es lo que intenta la nanotecnología. Lo que ocurre es que la computación cuántica da un paso más y no sólo intenta controlar ese mundo microscópico, sino también sus cualidades cuánticas.

¿La cuántica también tiene aplicaciones en el terreno del almacenamiento de datos?

No, tiene muy pocas aplicaciones. Realmente no puede almacenar muchos más datos que un ordenador clásico. En un ordenador cuántico se pueden procesar mejor y más rápido, no guardar.

Entonces, ¿el computador cuántico no desbancará al clásico? ¿De qué depende su futuro?

Los ordenadores clásicos estarán durante mucho tiempo. Luego aparecerán los cuánticos y los sustituirán, pero tal vez ocurra dentro de 100 años. Es difícil de predecir, aunque queda mucho. Todavía se está investigando y no sabemos muy bien cómo utilizarlos salvo para obtener una serie de algoritmos.

Uno de los primeros usos que está teniendo la información cuántica es la encriptación, ¿Cómo se consigue?

En la criptografía cuántica no es importante almacenar datos, sino enviarlos. Se consigue a través de superposiciones cuánticas: los bits cuánticos, en lugar de enviar 0 y 1, envían superposiciones de forma que, si alguien los intenta medir, cambia su estado y el receptor puede percatarse de que hay alguien viendo el mensaje.

Si todo está formado por átomos, la cuántica debería ser una cuestión que interesara a todas las disciplinas científicas. ¿Es la cuántica un puente entre distintos saberes?

Lo és. Cuando haces una conferencia sobre mecánica cuántica te encuentras desde matemáticos desarrollando teorías matemáticas de la información, informáticos que buscan algoritmos y protocolos de comunicación, físicos teóricos y experimentales de materia condensada, de estado sólido o de física molecular y atómica, químicos… es una materia muy interdisciplinar.

Y en el caso de la astrofísica, ¿cómo puede la física cuántica ayudarnos a la comprensión del Universo?

Sin duda, está muy presente en la astrofísica. Hay dos partes de la cuántica que pueden ayudar a entender el Universo. Por un lado, la relatividad nos permite ir hacia atrás, pero hay un momento inicial en que no sabemos qué pasó y en el que nos hace falta la mecánica cuántica. Sin embargo, no tenemos, por ahora, ninguna teoría de la gravitación cuántica que nos de una respuesta. Por otro lado, la mecánica cuántica también está presente cuando miramos las estrellas y vemos los espectros de emisión para saber cuáles son los componentes. En el caso de la información cuántica no son estas propiedades espectrales las que se utilizan, sino otras propiedades distintas.

¿Habrá una teoría del todo que unifique la macro y lo microscópico?

Yo creo que sí, aunque está costando mucho.

Y en biología, ¿comprender cómo se autoorganizan y ensamblan los átomos puede tener implicaciones en la manera de analizar las moléculas y en cómo se constituye la naturaleza?

Algunos piensan que dentro de las moléculas hay procesos coherentes parecidos a las superposiciones. Aunque encontramos muchas controversias al respecto: hay quien opina que las temperaturas de las moléculas que hay en la naturaleza son demasiado altas para que estas superposiciones jueguen un papel importante. Sin embargo, no hay duda de que a más bajas temperaturas sí lo juegan. También hay gente que utiliza la mecánica cuántica para promover mejores reacciones químicas, utilizando láseres y el principio de superposición, y obtener productos de una manera más eficiente.

¿Las posibilidades de computación cuántica nos acercan a la inteligencia artificial?

Por el momento, no hay quien haya hablado de inteligencia artificial de manera cuántica. Hay un problema de almacenamiento relacionada con el autoaprendizaje. Para resolverlo se pueden utilizar varias reglas, las de la mecánica clásica y la cuántica. En la clásica hay una serie de protocolos que te dicen cómo tienes que resolverlo de una forma determinada. Con la cuántica tienes que encontrar los algoritmos y ver qué es mejor. Para ciertos problemas conocemos esos algoritmos y sabemos que son mejores, pero para la inteligencia artificial, el almacenamiento y procesamiento de información, nadie ha planteado que exista un algoritmo que demuestre que es mejor.

¿La revolución cuántica es una utopía o una realidad?

La anterior revolución pertenece a los ordenadores y el transistor que están basados en la mecánica cuántica. Este progreso en el siglo pasado fue debido a la existencia de los láseres, los semiconductores y otras propiedades de los materiales eléctricos. La segunda revolución tendrá lugar cuando el principio de superposición, la incertidumbre y las propiedades extrañas que utiliza la información cuántica jueguen un papel importante.

Entonces, ¿este mundo de lo infinitamente pequeño y de efectos extraños está mas presente de lo que creemos?

Dicen que el 40% de la economía actual tiene una base cuántica.

Por último, ¿Dios juega a los dados?

Parece que sí. Einstein no se convenció porque no pudo ver los experimentos realizados en los 70 y 80 que han demostrado que existen superposiciones y que cuando las observamos lo que obtenemos es completamente aleatorio. La vida no es determinista.

Entrevista realizada por Eva Rodríguez Zurita e Iván Jiménez Montalvo para la revista IAC Noticias (Ver versión en .pdf)

Dalí: el Universo en su reverso

Como un moderno personaje renacentista, el artista de Figueres creía firmemente en la concurrencia entre la causa surrealista y la ciencia. Su obra es un maravilloso recorrido por los avances científicos del siglo XX.

Como un moderno personaje renacentista, el artista de Figueres creía firmemente en la concurrencia entre la causa surrealista y la ciencia. Su obra es un maravilloso recorrido por los avances científicos del siglo XX.

Dalí fue un artista de muchas inquietudes. En especial, se sintió fascinado por la ciencia, cuyos descubrimientos alimentaron su creatividad, sus reflexiones, escritos y, sobre todo, su obra. Como un moderno personaje renacentista, el artista de Figueres creía firmemente en la concurrencia entre la causa surrealista y la ciencia. Su obra es un maravilloso recorrido por los avances científicos del siglo XX. El pintor catalán trató disciplinas como la cuántica, la física nuclear, la relatividad, la genética, la geología, la geometría, la psicología y la óptica.

Dalí utilizó el lenguaje científico con rigor y como culto a la objetividad. Aprovechó la capacidad de la física y las matemáticas de ver más allá de los objetos visibles y del mundo tangible para explorar en sus obras nuevas dimensiones que superasen la realidad cotidiana. Según él, la ciencia era, además de una fuente de inspiración inagotable, una de las vías para llegar a la inmortalidad e incorporó plenamente a sus pinturas un mundo basado en las leyes de la relatividad y la incertidumbre cuántica. De hecho, creó un método basado en un discurso científico para explicar el funcionamiento de su proceso creativo: el método paranoico-crítico.

Ávido lector de publicaciones científicas, hasta su muerte estuvo suscrito a revistas especializadas y poseía una amplia biblioteca de libros de física, biología y matemáticas repletos de sus propias anotaciones en los márgenes. El interés que demostraba por cada teoría emergente le valió la amistad de muchos científicos, que ayudaron y asesoraron al pintor en la realización de sus obras y admiraron la poderosa intuición del artista. “Todos mis cuadros, la gente se ríe al verlos por primera vez, pero después de casi 12 años, todos los científicos reconocen que cada una de estas pinturas es una auténtica profecía”, declaró.

Tras su imagen frívola y provocadora se escondía un creador seriamente involucrado con los avances de la ciencia y sus implicaciones sociales. Para Dalí no había nada más sugerente que la realidad: “es evidente que existen otros mundos, pero esos otros mundos están en el nuestro, residen en la Tierra”.  El pintor no sólo encontró en la ciencia el impulso poético que necesitaba, además de una religión y una manera de trascender, sino que llegó a sentenciar: “los pensadores y literatos no pueden aportarme absolutamente nada y los científicos todo, incluso la inmortalidad del alma”.

La relatividad del inconsciente
Dalí estuvo especialmente influenciado por las teorías de dos grandes pensadores del siglo XX, Freud y Einstein. De este último, Dalí acoge las implicaciones del espacio-tiempo relativista cuyas explicaciones escuchó en la visita que el físico hizo a la Residencia de Estudiantes en 1923. Aquella semilla científica germinará en su obra “La persistencia de la memoria” (1931), donde Dalí pinta la deformación del tiempo, la cuarta dimensión de Einstein, representada con diversos relojes blandos y maleables que consideró premonitorios de la nueva física que se avecinaba.

En cuanto a Freud, incorporó el psicoanálisis y utilizó sus teorías para penetrar en el inconsciente científicamente. Dalí escribió: “Freud es mi padre”. De hecho, en 1938, llegó a entrevistarse con él en Londres. El artista, fascinado por todo lo invisible, intentó plasmar en sus pinturas el mundo del inconsciente, el universo sumergido según el padre del psicoanálisis. Dalí siempre tenía a los pies de su cama un caballete con un lienzo preparado para plasmar las ensoñaciones que recordaba tras despertar. Manifestó: “yo trabajo constantemente en el momento de dormir; mis mejores ideas vienen de mis sueños y la actividad más ‘daliniana’ se produce mientras duermo”.

La firma de Salvador Dalí se inspira en una imagen científica: la fotografía estroboscópica de la caída de una gota de leche tomada por Harold Edgerton.

La firma de Salvador Dalí se inspira en una imagen científica: la fotografía estroboscópica de la caída de una gota de leche tomada por Harold Edgerton.

Dalí mezcló los elementos psicoanalíticos con aspectos del campo de la percepción. En especial, añade algunos fundamentos de la psicología de la Gestalt que estudió, desde principios del XX, los fenómenos fisiológicos y psicológicos que subyacen en la percepción y la relación del sujeto con el medio. Manipulando la imagen, Dalí logra en su obra hacernos partícipes de un delirio perceptivo, una “ilusión óptica” según la Gestalt, de forma que lo que vemos es tangible e imposible de contradecir.

El engaño de los sentidos
La primera de las pasiones científicas de Dalí fueron las dobles imágenes. Intrigado por el engaño de los sentidos, experimentó con representaciones de objetos que conforman, a la vez, otros totalmente distintos. La primera doble imagen que pinta es “El hombre invisible” (1929). Fueron varios los orígenes de esta obsesión por la metamorfosis perceptiva: por un lado, el ensayo de Freud sobre el cuadro de Leonardo da Vinci “Santa Ana, la virgen y el niño” (1517), donde aparece un buitre entre los pliegues del ropaje; y por otro, el célebre “Tratado de la Pintura” (1651) del mismo Leonardo, donde instaba a los artistas a encontrar figuras reconocibles en las manchas o contornos informes de paredes sucias o nubes.

Otra de las inquietudes de Dalí fue la tridimensionalidad, que le condujo a combinar su técnica artística con la tecnología científica más destacada del momento. La primera de ellas fue la representación estereoscópica que descubre a través de las telas de Gerard Dou, artista holandés contemporáneo de Vermer, al comprobar que había realizado dos versiones, apenas distintas entre sí, de muchas de las escenas que retrató. Siguiendo esta idea, en “El Cristo de Gala” (1978) pintó dos cuadros casi idénticos para lograr la visión en tres dimensiones al superponerlos, y en “La armonía de las esferas” (1979) consigue su primera obra estereoscópica en un solo elemento. Al mismo tiempo, Dalí trabaja con la lente de Fresnel, un instrumento óptico ensayado por la NASA para ver imágenes en relieve.

Posteriormente, el artista creyó encontrar en la cuarta dimensión una salida al estancamiento del mundo del arte. En 1971, año en que Dennis Gabor recibió el Premio Nobel por sus trabajos sobre el láser, Dalí se interesa por la holografía, y un año después realiza la primera exposición de hologramas en Nueva York con asesoramiento del propio científico. En la introducción del catálogo de la muestra, Dalí explica: “Gracias al genio de Gabor, la holografía ha hecho posible el renacimiento del arte y las puertas de un nuevo espacio creativo se han abierto ante mi”.

Tampoco dejó de lado otros avances en el mundo de la imagen. Valoraba con interés las películas y la fotografía científicas coetáneas. De tal forma, el cine fue otro de sus medios de expresión el cual consideraba capaz de expresar la violencia de las emociones humanas mucho mejor que la quietud y la cristalización de la pintura. Y transformó la representación de la fotografía estroboscópica de la caída de una gota de leche, tomada por el ingeniero Harold Edgerton en 1936, en la corona con la que remataba su firma.

La estética de los números
Dalí llevó acabo en sus obras un extraordinario desarrollo de las matemáticas. Como los maestros clásicos, aplica el conocimiento científico al equilibrio de las composiciones. En especial, gracias a los consejos del matemático húngaro Matila Ghyka, obtuvo un gran dominio de la Regla Áurea, una proporción que ya conocían los griegos y que se encuentra en la naturaleza. Es el caso del cuadro “Semitaza gigante volante, con anexo inexplicable de cinco metros de longitud” (1945) donde una espiral áurea controla toda la composición.

El hipercubo fue una de las grandes intuiciones de Dalí que, adelantándose en 20 años a la representación matemática de Thomas Banchoff, muestra a Jesús crucificado sobre una cruz de cuatro dimensiones formada por ocho cubos unidos por sus caras.

El hipercubo fue una de las grandes intuiciones de Dalí que, adelantándose en 20 años a la representación matemática de Thomas Banchoff, muestra a Jesús crucificado sobre una cruz de cuatro dimensiones formada por ocho cubos unidos por sus caras.

Pero Dalí fue mas allá del uso técnico de las matemáticas y las incorporó como forma de expresión artística. Usó figuras abstractas como el cubo, la esfera o el dodecaedro, junto con otras casi inéditas en arte, como el hipercubo, un objeto de cuatro dimensiones, inimaginable salvo para los matemáticos, que el pintor utilizó en su cuadro “La crucifixión” (1954) o “Corpus Hypercubus”. El dibujo se adelantó en 20 años a la representación matemática de Thomas Banchoff que en 1975 publicó un artículo en el Washington Post ilustrado con la obra de Dalí. Desde entonces el científico y el artista mantuvieron una estrecha colaboración.

En cierta ocasión, preguntado en qué consistía su método paranoico-crítico, respondió: “en el método no hay nada de ensoñación sino topología trascendental”. Así, en muchos cuadros, los objetos (relojes, rostros, partes de cuerpos humanos o animales) experimentan cambios y deformaciones por medio de transformaciones topológicas, como en “Desintegración de la persistencia de la memoria” (1952-54), donde Dalí descompone las imágenes de su famosa pintura de los relojes.

Estos conocimientos en Topología Diferencial y Sistemas Dinámicos llevaron a Dalí a interesarse por la Teoría de las Catástrofes del matemático René Thom, quien obtuvo por ella la Medalla Field, equivalente al Premio Nobel. La teoría desafió el mundo científico al proponer una nueva manera de considerar todas las transformaciones que se producen de manera imprevista. Esta idea influyó en Dalí hasta el punto de que adaptó su firma para convertirla en una ecuación, como en “El rapto topológico de Europa” (1983), que materializa la idea de la evolución del continente europeo desde la teoría del creativo matemático.

Dalí escribe en 1985: “no se puede encontrar una noción más estética que la última Teoría de las Catástrofes de René Thom, que se aplica tanto a la geometría del ombligo parabólico como a la deriva de los continentes; la Teoría de René Thom ha encantado todos mis átomos desde que la conocí”. Y bajo sus influjos no dejó de crear, inspirando una particular caligrafía en el “Tratado de escritura catastrofeiforme” (1982) o formando parte de sus cuadros, como en “La cola de golondrina” (1983) donde aparece la ‘arista de retroceso’ de una superficie.

Pero Dalí fue todavía más lejos. Utilizará sistemas autorreferenciales y estructuras fractales en pinturas como “El rostro de la guerra”, (1940). Otras, como “La calavera de Zurbarán” (1956), contienen ilusiones ópticas basadas en un cubo de Necker y de Koffka. También, la espiral será un elemento fundamental. En “Figura rinoceróntica del Alisios de Fidias” (1954) o en “Retrato de Gala con síntomas rinocerónticos” (1954) relaciona las espirales logarítmicas con los cuernos de rinocerontes. Dalí, además, utilizó la teoría de la simetría y la combinó con un tipo específico de ambigüedad antisimétrica, tal y como ocurre en su “Aparición de rostro y frutero en una playa” (1938), donde casi todos los detalles tienen doble significado y la misma pintura representa un paisaje o la figura de un perro.

La doble hélice
El 25 de abril de 1953 se publicaba en la revista Nature un artículo, de poco más de una página, que causaría un gran impacto en la comunidad científica. El texto, escrito por un joven biólogo estadounidense de 24 años, James Dewey Watson, y un físico británico de 36 años que no había acabado su tesis doctoral, Francis Harry Compton Crick, explicaba la hipótesis de que el ADN, responsable de la transmisión del código genético, tenía una hermosa estructura de doble hélice. En poco tiempo, esta imagen se convirtió en un icono e impresionó profundamente a Dalí que la utilizó en su obra pictóricas como un elemento para pervivir en el tiempo, ya que consideraba el ADN como la clave de la inmortalidad.

Para el artista, tanto la estructura del átomo como el ADN configuraban una realidad que no podíamos percibir con los sentidos, realidades ocultas como la de los sueños. Así, en “Galacidalacidesoxyribonucleicacid” (1963), combinación de les palabras Gala, Dalí y ácido desoxirribonucleico, la doble hélice aparece junto con Gala, que es observada por la molécula de la sal, formada por hombres que se apuntan con fusiles. En “Representación del ADN” (1971) y “El ácido desoxirribonucleico y la escalera de Jacob”(1975) se reproduce el ácido desoxirribonucleico desde la óptica surrealista; a la estructura helicoidal le incorpora una historia bíblica: el sueño de Jacob con una escalera que llega hasta el cielo por donde bajan y suben los mensajeros de los dioses.

Dalí también dedicó una obra a Watson y Crick e incluyó las fotografías de ambos científicos con las inscripciones ‘Watson: a model builder’ y ‘Crick: Life is a three-letter word’ en “Hommage à Crick et Watson” (1963). La molécula aparecerá en otras muchas obras como “Árabes acidodesoxirribonucleicos” (1963), “La estructura del ADN” (1975) o “Paisaje de Mariposa. El gran masturbador en paisaje surrealista con ADN” (1957-58).

La mística nuclear
En 1940 Dalí se interesa por la teoría cuántica de Max Planck. Estaba fascinado por la física de partículas ya que permitía conocer los misterios insondables de la materia al igual que las teorías de Freud desvelaban el yo más escondido. En este año pinta la obra “Mercado de esclavos con la aparición del rostro de Voltaire” (1940), que finaliza la etapa surrealista. Y en 1945, aterrorizado por la explosión atómica de Hiroshima, inicia su periodo nuclear con el cuadro apocalíptico “Idilio atómico y uránico melancólico” (1945).

Desde entonces, Dalí aprovechará en sus obras, en sentido metafórico, los descubrimientos científicos relativos a la desintegración de la materia y a la liberación de la energía. Los objetos se descomponen en partículas que flotan en el espacio en un estado de aparente inmovilidad provocado por fuerzas de atracción y repulsión recíprocas, observable en obras como “Equilibrio interatómico de una pluma de cisne” (1947), “Las tres esfinges de Bikini” (1947) o “Desmaterialización de la propia nariz de Nerón” (1947).

El cuadro se estructura según la proporción Áurea que fue calculada siguiendo las directrices del matemático Matila Ghyka. En el boceto de 1947 se advierte la meticulosidad del análisis geométrico realizado por Dalí basado en el pentagrama místico pitagórico.

El cuadro se estructura según la proporción Áurea que fue calculada siguiendo las directrices del matemático Matila Ghyka. En el boceto de 1947 se advierte la meticulosidad del análisis geométrico realizado por Dalí basado en el pentagrama místico pitagórico.

La pintura corpuscular desembocará en la mística nuclear, una vuelta a la pintura religiosa mediante la nueva dimensión de la realidad y la materia descrita por la física moderna. “Deseaba ver y comprender las fuerzas y las leyes ocultas de las cosas, evidentemente para llegar a dominarlas”, comentó. “Mi genio intuitivo me dice que yo poseo un medio excepcional para penetrar en el corazón de las cosas: el misticismo”. Según él, la ciencia era una prueba de la existencia de Dios y la existencia de Dios era una prueba de la fuerza de la ciencia.

Dalí sigue pintando la fragmentación de la materia, pero incorpora elementos de la tradición religiosa. El pintor utilizará la tensión superficial, la fuerza de origen atómico que impide que dos materiales se mezclen, en “La Madonna de Portlligat” (1949), donde nada toca a nada, y para divinizar a su mujer Gala en “Leda atómica” (1949), obra que requirió un gran desarrollo matemático y el estudio del “Tratado de la divina proporción” del matemático renacentista Luca Pacioli. También, cautivaron al artista las esferas que representan a los átomos en los manuales de física, y en “Galatea de las esferas” (1952) muestra a su musa compuesta por multitud de átomos.

Sentía, además, fascinación por los grandes aceleradores de partículas que bombardeaban la materia y lo utilizó de inspiración en la creación de lo que llamó ‘la pistola cuántica’, un trabuco de época cargado de tinta que aplicará para realizar las litografías que ilustraron la Divina Comedia de Dante. El autor llegó a la necesidad de plasmar las antipartículas, trabajo que inicia con “La Asunción Antiprotónica” (1956), donde plantea que la Asunción de la Virgen no es consecuencia de la fuerza de la oración, sino de la fuerza de sus antiprotones.

Pero Dalí, sobre todo, admiraba la figura de Werner Heisenberg, el físico que anunció el Principio de Incertidumbre según el cual la propia presencia del observador determinaba la observación, lo que el pintor consideraba absolutamente surrealista. En 1958, Dalí escribe el texto “Manifiesto Antimateria”, en el que declara: “quiero encontrar la manera de transportar mis obras a la antimateria. Se trata de la aplicación de una nueva ecuación formulada por el doctor Werner Heisenberg (…) Esta es la razón de que yo, que sólo admiraba a Dalí, comience a admirar a este Heisenberg que se parece a mí”.

La nueva cultura
En los últimos años de su vida, en 1985, el Museo Dalí de Figueres acogió una reunión científica de alto nivel bajo el título “Cultura y Ciencia: determinismo y libertad” en el que asistieron físicos, matemáticos y artistas. El enfermo y anciano Dalí siguió con atención desde su habitación toda la jornada a través de un circuito de televisión interno y durante el simposio se entrevistó personalmente con la algunos de los científicos asistentes, entre ellos sus dos amigos, René Thom e Ilya Prigogine, a quienes pidió que reconciliaran sus diferencias científicas “en el nombre de Schrodinger”.

Pero ésta no fue la última anécdota de Salvador Dalí respecto a la ciencia. El día de su muerte, en 1989, dejó en su mesilla de noche varios libros, entre ellos, “La breve historia del tiempo” de Stephen Hawking, “La geometría del arte y la vida” del matemático Matila Ghyka y “¿Qué es la vida?” del físico Erwin Schrodinger. Sin duda, unas lecturas muy singulares para cualquier artista, pero no para Dalí quien, en 1979, con motivo del ingreso en la Académie des Beaux-Arts del Instituto de Francia, a la pregunta del porqué de su interés por la ciencia, respondió: “porque los artistas no me interesan nada. Creo que los artistas deberían tener nociones científicas para caminar sobre otro terreno, que es el de la unidad”.

Dalí fue pionero en el diálogo entre las humanidades y las ciencias: “lo desgraciado de nuestros días es la monstruosa especialización de cada ciencia; o sea, el que sabe de física no sabe de pintura, el pintor no sabe de física, el biólogo muy poco de física, todo está demasiado especializado”. El artista siempre fue consciente de los logros de la ciencia y se sintió responsable de sus implicaciones. “Estamos asistiendo al progreso casi monstruoso de la civilización, sin ningún tipo de síntesis”, afirmó. Por ello, quiso volver a agrupar ambos mundos, tal y como lo había hecho Leonardo en el Renacimiento: “yo soy el salvador de la pintura”.

Lamentablemente, su disfraz de bufón exhibicionista que le dio dinero y fama eclipsó la lectura científica de su obra. Él era consciente de ello: “si no organizara estos espectáculos y dijera disparates, interesaría mucho menos como pintor”. Loco o visionario, la ciencia que le acompañó toda la vida tiene mucho que aprender de sus lienzos. Dalí sabía que no hay mayor recurso creativo que poner la realidad patas arriba. Y ese es el impulso poético que convendría recuperar para la ciencia: que los matemáticos piensen en física, los físicos en biología, los biólogos en arte y los artistas en matemáticas; ver, por un instante, el Universo en su reverso.

Este artículo fue publicado en el diario “La Opinión de Tenerife” (Versión .pdf ) y recibió una Mención Honorífica en los Premios Prismas Casa de las Ciencias a la Divulgación 2006