Archivo de la etiqueta: matemáticas

Eames: ciencia y diseño

“Take your pleasure seriously” , Charles Eames

eames_mathematicaj

Charles y Ray Eames frente a la maqueta conceptual de la exposición “Mathematica” que diseñaron para el California Museum of Science and Industry en 1961 por encargo de IBM Corporation. Crédito: Eames Office, LLC.

Existen parejas que pueden (o no) llevarse bien en el amor, pero que trabajando juntas son capaces de complementarse hasta el punto de convertir su relación en una fuente de energía creativa arrolladora. Éste fue el caso de Charles y Ray Eames que, además de marido y mujer, fueron el dúo de diseñadores más importante del siglo XX.

Los Eames son un arquetipo de colaboración creativa, pero también de unión entre conocimiento científico y humanista. Charles, como arquitecto, aportaba el conocimiento técnico, mientras que Ray imprimía el sentido artístico y estético. El éxito de sus trabajos son hoy la demostración de que la innovación y la creatividad surgen, a menudo, en la frontera entre disciplinas pero, sobre todo, cuando las personas ponen en contacto sus respectivas imaginaciones. En palabras de Charles: “en última instancia todo se conecta -personas, ideas, objetos. La calidad de las conexiones es la clave de la calidad en sí”.

Sus personalidades se atrajeron como polos opuestos y, gracias a su alianza sentimental y profesional, los Eames dejaron un legado fascinante.  Juntos abarcaron un amplio rango de disciplinas: arquitectura, diseño de muebles, películas, fotografía… Prácticamente, no hubo ningún medio o soporte que la pareja no abordara con imaginación e inventiva. Como manifestó Charles en una ocasión: “es una reacción en cadena; cada tema nos lleva al siguiente”.

Trailer del documental “Eames: The Architect and the Painter” (2011) que analiza la relación profesional y personal del dúo de diseñadores.

Divulgación de la ciencia
Aunque la fama les llegó gracias a sus diseños de muebles, especialmente de sillas (como la inmortal Lounge Chair and Ottaman), los Eames se consideraban a sí mismos comunicadores de imágenes. Su objetivo principal era redefinir cómo el público entendía la información y cómo ésta debía ser presentada, ambición que les convirtió en pioneros de la sociedad de la información. Como manifestó Charles en cierta ocasión: “detrás de la era de la información está la era de las oportunidades”.

eames_sling

Charles y Ray Eames trabajando en un prototipo de la Aluminum Group Lounge Chair en 1957. Crédito: Eames Office, LLC.

Concebían sus proyectos como “llamadas a las armas”, manifiestos intelectuales para educar al espectador en los que conseguían trasmitir grandes cantidades de información pero “dejando salir el buen humor”. Los Eames llamaban a esta estrategia “diversión seria” y a través de ella desarrollaron una amplia labor educativa, fundamentalmente, en la divulgación de la ciencia, a través de revolucionarios diseños de exposiciones, libros y películas que hoy en día siguen siendo un referente.

Charles_Eames_House

Imagen de Charles Eames tomada por el fotógrafo Peter Stackpolel en la Case Study House, donde vivía la pareja, para la revista LIFE en 1950. En el pie de foto del reportaje puede leerse: “Los diseños naturales contenidos en las plantas del desierto de Mojave fascinan a Eames a quien le gusta colgarlos en la pared de su estudio. De ellos dice que recibe ideas para sus propios diseños ” (Enlace al reportaje fotográfico completo al clicar en la imagen) . Créditos: Time Inc.

Posiblemente,  la clave principal del éxito de los Eames en la divulgación de la ciencia es que ellos mismos fueron, además de curiosos, unos investigadores incansables. Su colaboración, durante la Segunda Guerra Mundial, con el ejército de los Estados Unidos les permitió tener acceso a los últimos avances tecnológicos en materiales y maquinaria que luego aplicaron a sus creaciones. A lo largo de su carrera, diseñaron muebles con madera contrachapada, fibra de vidrio, plástico, malla metálica, aluminio… que moldeaban con aparatos que ellos mismos desarrollaban en su estudio. Además, inventaron sistemas de asientos múltiples para aeropuertos o escuelas, contenedores, sillas apilables, etc. Y desarrollaron un innovador estilo arquitectónico de bajo coste y diseño minimalista basado en procesos industriales y en la utilización de módulos prefabricados.

science_letter_eames

Una muestra de la frecuente correspondencia que la oficina de los Eames mantuvo con científicos. En este caso se trata de una carta al biólogo Jean-Paul Revel, uno de los muchos asesores de la película “Powers of Ten” (1977). Crédito: Manuscript Division, Library of Congress (E-02)

Pero los Eames no sólo estaban al día en el desarrollo de nuevos materiales y técnicas de producción, sino que también adoptaron el lenguaje, la estética y la metodología de la ciencia para crear su impactante estilo visual. De hecho, los Eames tuvieron entre sus colegas y amigos a reconocidos científicos que colaboraron con ellos en muchos de sus proyectos, especialmente, los educativos.

Los Eames se comprometieron a fomentar el entendimiento popular sobre los beneficios sociales del conocimiento. Para ello, desarrollaron la peculiar habilidad de traducir las ideas complejas en simples imágenes con las que conseguían hacer la ciencia fascinante y accesible para el público general. La fórmula seguida por los Eames consistía, por un lado, en mostrar la belleza y la elegancia de los principios científicos y, por otro, en relacionar los aspectos desconocidos de la ciencia con aspectos familiares de la vida cotidiana. De esta forma convirtieron sus exposiciones y películas en atractivas experiencias de aprendizaje en las que la ciencia se integraba con el arte, el diseño y la filosofía.

Colaboración con IBM
La labor divulgativa de los Eames está estrechamente relacionada con la empresa informática IBM. En la década de 1950, tras conocer el filme A Communication Primer (1953) que explicaba el uso del ordenador en un lenguaje llano, IBM contrató al dúo de diseñadores para crear una serie de películas y exposiciones para su programa educativo. El objetivo de éste no era promocionar los productos de la empresa, sino ayudar a entender a la sociedad el potencial y el impacto de las nuevas tecnologías en el futuro. El primer encargo de IBM al estudio Eames fue la realización de la película The Information Machine (1957), una especie de remake de su anterior filme. De esta forma, comenzó una colaboración que se prolongó más de tres décadas y en la que los Eames llegaron a crear más de cincuenta películas, libros y exposiciones para la multinacional informática.

Pero el proyecto más importante encargado por IBM fue Mathematica: A World of Numbers…and Beyond, una exposición interactiva de matemáticas que se convirtió en un referente mundial del diseño de exposiciones científicas para museos. La muestra se realizó en 1961 para inaugurar una nueva sección del California Museum of Science and Industry en Los Angeles. Charles y Ray Eames pasaron un año investigando y diseñando Mathematica. El objetivo de la exposición era crear una exposición que entretuviera y educara, o como expresó Charles: “iluminar a los aficionados sin avergonzar a los especialistas”.

charles_eames_IBM_mathematica

Charles Eames mostrando a miembros de IBM el “cubo de la multiplicación”, un interactivo formado por 512 luces que resolvía las funciones de elevación al cuadrado y al cubo escritas por los visitantes a través de un teclado. Crédito: IBM Corporate Archive

El folleto de la exposición dejaba claro su planteamiento:

“Las matemáticas son una herramienta. Las matemáticas son una ciencia. Las matemáticas son una obra de arte. Las matemáticas son un lenguaje, un lenguaje conocido y usado a diario, un lenguaje que toca y afecta a casi todas las áreas del trabajo humano y el juego.”

Mathematica_Moebius-Strip

Una llamativa cinta de Moebius, interpretada con una flecha móvil, se convirtió en un de los elementos distintivos de la exposición “Mathematica”. Crédito: Eames Office, LLC.

El resultado fue espectacular. Dos muros de 15 metros delimitaban la exposición: el “muro de la historia”, una línea temporal que resumía los principales logros de matemáticos famosos; y el “muro de la imagen”, que mostraba de forma gráfica principios matemáticos fundamentales. Nueve instalaciones interactivas ocupaban el área central de la exposición  e intentaban explicar al público general conceptos como la multiplicación, la topología, la mecánica celeste, la probabilidad y la geometría proyectiva (explicaciones que se completaban con el catálogo de la exposición). Además, cinco “peep shows” mostraban a los asistentes divertidas películas de animación de dos minutos -con música de Elmer Bernstein-, sobre conceptos matemáticos. Sus títulos: Simetría, Eratóstenes, Topología, Funciones y 2n.

mathematica_peepshow

Dispositivos individuales de visionado o “peep shows” mostraban a los visitantes películas de animación de dos minutos sobre conceptos matemáticos. Crédito: IBM Corporate Archive

Mathematica encantó a los espectadores.  Su éxito abrió el apetito del público por entender la ciencia y allanó el camino para la creación de exposiciones experimentales y de museos como el Exploratorium de San Francisco o el Museo de Chicago de Ciencia e Industria. Además, hizo historia convirtiéndose en la exposición para museo, patrocinada por una empresa, de más larga duración hasta la fecha. Se mantuvo abierta hasta 1998, antes de recorrer los principales museos de arte de Estados Unidos. Actualmente, la exposición original se exhibe en el New York Hall of Science y una copia se encuentra como instalación permanente en el Museo de la Ciencia de Boston.

Vídeo realizado por el  New York Hall of Science que explica los elementos que componen la exposición “Mathematica”

Tras Mathematica, los Eames siguieron diseñando exposiciones científicas para IBM, como A computer Perspetive (1971) que recorría la historia del procesador de datos y el ordenador;  Copernicus (1972) con motivo de los quinientos años del nacimiento del astrónomo (a quien los Eames también dedicaron una película);  Isaac Newton: Physics for a Moving Earth (1973), exposición itinerante sobre astronomía y física; y Movable Feasts and Changing Calendars que repasaba los usos de los calendarios desde la antigüedad hasta el presente y su vinculación con la astronomía.

Exposiciones Universales
Los Eames también participaron en otros montajes de gran impacto visual y estético que, de un modo u otro, siempre estuvieron relacionados con la ciencia. El dúo de diseñadores formó parte de La Exhibición Nacional Estadounidense (American National Exhibition) realizada en Moscú en 1959.  La muestra fue organizada por el Departamento de Estado de EE. UU. para promover el intercambio cultural entre las dos superpotencias, aunque en realidad se trataba de un escaparate propagandístico en el que mostrar “ciencia, tecnología y cultura” por turnos.

Glimpses-of-America

Imagen de “Glimpses of the USA”, una espectacular instalación de pantalla múltiple ideada por Charles y Ray Eames para la gran exposición de Moscú en 1959. La película se proyectó dentro de una cúpula geodésica diseñada por Busckminster Fuller. Crédito: Eames Office, LLC.

El diseño corrió a cargo del arquitecto y diseñador George Nelson de la empresa Herman Miller (representante del mobiliario Eames), quien recomendó al dúo de diseñadores para que produjeran una película que mostrara las ventajas del estilo de vida estadounidense. El resultado de esta colaboración fue una espectacular instalación de pantalla múltiple, conocida como Glimpses of the USA, situada dentro de la nueva cúpula geodésica diseñada por el visionario y genial arquitecto Buckminster Fuller.

Con esta suma de talentos, no es de extrañar que la instalación fuera calificada por la prensa mundial como una auténtica “maravilla tecnológica”. Constaba de siete pantallas de seis por nueve metros. Juntas formaban un mosaico en el que se proyectaba una película de nueve minutos compuesta por 2.200 imágenes.

La película comienza con imágenes del espacio exterior -mostrando estrellas, constelaciones, cúmulos estelares, nebulosas, etc.-, hasta que, de manera parecida a lo que luego harían en su famosa película Powers of Ten (1977), aterriza en el ciudad mientras el narrador dice: “Las mismas estrellas que brillan en Rusia brillan en los Estados Unidos. Desde el cielo, nuestras ciudades se ven muy parecidas”. Seguidamente, la película pasa a mostrar los detalles de “un día normal de trabajo”  y un “día típico de fin de semana” en la vida de los habitantes de los Estados Unidos.

La proyección de los Eames fue el gran éxito de la Feria. Cerca de tres millones de personas se amontonaron en este espacio durante las seis semanas de exhibición. Hasta el propio Fuller afirmó: “nadie había hecho nada como esto antes” e instó a los anunciantes y a los directores de cine a seguir la senda experimental y efectista marcada por los Eames.

Tras esta exitosa puesta en escena, los Eames se hicieron imprescindibles en las sucesivas exposiciones culturales.  Y su sistema de narración fragmentada en pantalla multiple se convirtió en su sello distintivo. En 1962 participaron en la Feria Mundial de Seattle (The Century 21 Exposition) en la realización de una película de 14 minutos titulada The house of Science. Esta vez se trataba de una proyección sincronizada sobre seis pantallas cóncavas instaladas en el interior de una sala oval. La película servía de prólogo para el pabellón de la Ciencia donde se divulgaba conceptos relacionados con disciplinas como las matemáticas, la astronomía, la ciencia atómica y la genética.

Y en 1964 los Eames, junto con el arquitecto Eero Saarinen, se hicieron cargo del pabellón de IBM para la Feria Mundial de Nueva York (1964 New York World’s Fair). La principal atracción de la muestra fue el Ovoid Theater, un recinto elevado a 27 metros de altura con forma de huevo. En su interior se proyectaba sobre 22 pantallas de diferentes formas y tamaños el documental THINK, mezcla de animación, planos fijos e imágenes reales, narrado por un presentador en directo. El objetivo de la película era dar la bienvenida a los espectadores a la era de la informática e intentaba establecer una relación entre el procesamiento informático y asuntos corrientes como organizar una cena con invitados o predecir el tiempo.

IBM_eames

Charles Eames enseña una maqueta del Pabellón IBM y su principal atracción, el Ovoid Theater, a Dean R. McKay, vicepresidente de la compañía. Crédito: Eames Office, LLC.

Dos elementos de la muestra Mathematica fueron reproducidos para la exposición: el muro con el collages de anécdotas de matemáticos y la máquina de probabilidades de más de 4 metros. El estudio también produjo para la exposición tres películas de marionetas creadas por ordenador para familiarizar a los visitantes con los ordenadores y el procesamiento de datos: Computer Day at Midvale, Cast of Characters y Sherlock Holmes in the singular case of the plural green Mustache.

El pabellón fue desmantelado al concluir la exposición. Sin embargo, los Eames produjeron varias películas más como documentos para la posteridad: IBM at the Fair (1965), un vídeo-resumen sobre la feria,  y View from the people wall (1966), una versión condensada en una sola pantalla de la película THINK.

Películas científicas
Las películas fueron el hilo conductor de todos los proyectos de los Eames. Durante toda su carrera, Charles y Ray llegaron a producir más de 100 filmes. “No son sólo películas, sino intentos de comunicar una idea”, decía Charles. Su estilo, próximo al cine experimental, estaba basado en la fragmentación narrativa y en una deliberada sobrecarga informativa. Su fórmula: cortes rápidos, imágenes fijas, animación, colores vivos y la música de Elmer Berstein, el gran compositor de cine americano, autor de bandas sonoras como Los Diez Mandamientos, Matar a un ruiseñor o La Edad de la inocencia.

Eames-documentary

Charles y Ray Eames durante el rodaje de una de sus películas . Crédito: Eames Office, LLC.

La máxima expresión Eamesiana en el medio cinematográfcio -hoy considerada como obra maestra-,  fue una película de divulgación científica: Powers of Ten. Se realizaron dos versiones, una en 1968 para la Comisión de Física Universitaria, y otra en 1977 más completa. La película  está basada en un libro de 1957 titulado Cosmic View: the Universe en Forty Jumps del holandés Kees Boeke, aunque el concepto de escala ya había sido tratado en dos películas anteriores de los Eames, A Communication Primer y 2n.

El filme explora el tamaño relativo de las cosas desde lo microscópico hasta lo cósmico. El espectador viaja desde una vista aérea de un hombre en un parque de Chicago a los límites exteriores del universo directamente sobre él. La imagen se aleja cada diez segundos a una distancia diez veces mayor hasta alcanzar la cifra de 10 elevado a la 25ª potencia. Luego, la imagen empieza a descender en sentido contrario hasta adentrase en el mundo microscópico que figura en la mano del hombre, alcanzando la cifra de 10 elevado a la menos 16ª potencia.

La versión completa, de nueve minutos, fue realizada en colaboración con el profesor de física del MIT Philip Morrison, que hace de narrador en la película, y un grupo de asesores en astrofísica, biología, genética y física de partículas. El proceso de realización fue toda una hazaña para la época. Tardaron más de un año en reunir todo el material y para ordenarlo tuvieron que construir un banco de animación de 12 metros de largo.

La película se distribuyó en escuelas y fue vista por varias generaciones de niños. En 1982 se convirtió en un libro, Powers of Ten: A Book About the Relative Size of Things in the Universe and the Effect of Adding Another Zero, escrito por Philip Morrison, Phylis Morrison y la Oficina Eames. La película, dado su valor histórico y estético, fue incluida en 1998 para su preservación en el Registro Nacional de Cine de la Biblioteca del Congreso de EE.UU.

Eames_play

Charles y Ray Eames posando dentro de las patas metálicas de sus sillas Dining Chairs Metal (DCM) sobre la acera frente a su estudio, en 1947. Crédito: Eames Office, LLC.

La realización de la película concluyó un año antes de la muerte de Charles y constituyó su último gran logro personal y como pareja. Tras su fallecimiento, Ray cerró las puertas de su estudio y se dedicó a catalogar y escribir sobre el legado de su marido. Ella murió en 1988, exactamente, diez años después que él. El día antes de su muerte ella le dijo a un amigo: “sé que día es mañana”.

Interesante e inspiradora charla TED realizada por Eames Demetrios, nieto del dúo de diseñadores, sobre las claves del proceso creativo de los Eames.

Puedes votar este artículo en Menéame y Divúlgame.

Ciencia y Compás (I): Arte a la redonda

“Si un hombre se echa sobre la espalda, con las manos y los pies extendidos, y coloca la punta de un compás en su ombligo, los dedos de las manos y los de los pies tocarán la circunferencia del círculo que así trazamos”.  Leonardo da Vinci (“El Hombre de Vitruvio”)

Compás parabólico diseñado por Leonardo da Vinci

El compás ha sido un símbolo de perfección y medida a lo largo de la historia. Basta determinar su centro y un punto cualquiera para conseguir un fabuloso y refinado círculo. Pero no sólo sirve para la creación de redondeles, sino también para trazar ángulos y tomar distancias. Gracias a este instrumento geométrico los griegos construyeron gran parte de sus figuras planas y consideraron que cualquier construcción hecha solamente con regla y compás era más elegante que aquellas conseguidas por otras herramientas. Por ello, su imagen ha sido utilizada frecuentemente por el arte como representación del conocimiento y la ciencia, en especial, de disciplinas como las Matemáticas, la Geometría, la Astronomía, la Filosofía natural o la Arquitectura. Veamos algunos ejemplos:

Newton (1995) y Master of the Universe (1989)
De Eduardo Paolozzi

"Newton", Eduardo Paolozzi. British Library (Londres). Credito: John McCullough

El artista escocés Eduardo Paolozzi realizó en 1995 una escultura para la Biblioteca Británica de Londres basada en el cuadro Newton de William Blake en la que se representa al genio de la manzana desnudo y con un compás en la mano. Paolozzi se inspiró en estos dos grandes genios ingleses como símbolos de la unión entre la ciencia y el arte. Para resaltar esta idea puso a su escultura los ojos del David de Miguel Ángel. Antes de esta obra, Paolozzi había realizado otra muy parecida llamada Master of the Universe, inspirada en El anciano de los días también de Blake. A diferencia de la estatua de Newton, el Creador es ciego y usa sus dedos en lugar de un compás.

Master of the Universe, Eduardo Paolozzi. National Gallery of Scotland (Edimburgo)

Como era habitual en la obra del artista, los personajes aparecen reconstruidos de un modo cubista lo que les confiere un cierto aire robótico o cibernético. “Un escultor en el mundo urbano debe preocuparse por las contradicciones del hombre y la máquina”, expresó. Paolozzi siempre estuvo muy interesado en los desarrollos científicos y tecnológicos lo que quedó reflejado en una serie de esculturas humanas con elementos mecánicos. El escritor de ciencia ficción J. G. Ballard dijo que “si hubiera un holocausto, se podría reconstruir el siglo XX con los trabajos de Eduardo Paolozzi”. El siguiente vídeo es un buen resumen de su obra:

El anciano de los días (1794) y Newton (1795)
De William Blake

"El anciano de los días", William Blake. British Museum (Londres)

El anciano de los días es una ilustración realizada por el escritor y pintor romántico William Blake para el frontispicio de su poema Europa, una profecía (1794). En ella aparece una divinidad, que Blake identifica como Urizen -símbolo de la fuerza de la razón-, que mide las dimensiones de su creación mediante un compás. Observamos también en la imagen una serie de figuras geométricas básicas como el triángulo y, por supuesto, el círculo. La obra de Blake estuvo muy influenciada por la mitología y la religión. La ciencia, en cambio, no era santo de su devoción.

"Newton", William Blake. Tate Britain (Londres)

Consideraba ridículo cualquier esfuerzo por intentar entender la creación a través de leyes racionales. La ciencia, sin la imaginación y sin la poesía, era par él un poder satánico que intentaba reemplazar a los dioses. Como crítica a la arrogancia intelectual de los científicos quiso parodiar en otra ilustración a Newton mostrándolo desnudo, en una posición contraída y sosteniendo nuevamente un compás; concentrado en su estudio, pero sin apreciar las belleza de la naturaleza circundante.

El geógrafo (1668-1669) y El astrónomo (1668)
De
Johannes Vermeer

"El geógrafo", Johannes Vermeer. Städelsches Kunstinstitut (Frankfurt)

Aunque este cuadro recibe el nombre de El geógrafo, no se conoce exactamente cuál es el motivo del lienzo. Tampoco se sabe a quién está retratando, aunque existe la teoría de que tal vez se trate del rostro del propio Vermeer. Pero lo que sí está claro es que el conjunto de elementos representados tienen mucho que ver con la ciencia; el personaje sostiene un compás en la mano y no es casualidad que detrás de él se muestre una esfera, concretamente, un globo terráqueo. También cabe interpretar el mapa sobre el que se inclina como un símbolo del poder del conocimiento ya que en la época de Vermeer los Países Bajos eran una potencia comercial gracias a los descubrimientos geográficos que habían permitido el comercio con territorios lejanos.

"El astrónomo", Johannes Vermeer. Musée du Louvre (Paris)

Hasta entonces no era habitual mostrar a científicos en la pintura ya que se suponía que la ciencia atentaba contra lo divino. Vermeer quiso plasmar el cambio de paradigma que el mundo estaba experimentando en el siglo XVII y que ponía fin al viejo molde de la Edad Media impuesto por la Iglesia. Para ello, utilizó esta figura y la de El astrónomo, en la que también podemos apreciar instrumentos científicos, como el dibujo de las tablas astronómicas, el astrolabio plano de la mesa o el compás al lado del libro. En este interesante vídeo podrás descubrir algunas claves más del misterioso cuadro de “El geógrafo”:

Heráclito (1650-1674) y otros Filósofos
De Luca Giordano

"Heráclito", Luca Giordano. Pinacoteca Tosio Martinengo (Brescia)

Siguiendo la moda, entre los hombres de letras y los coleccionistas del Barroco, de las serie de retratos de filósofos de la antigüedad, el napolitano Luca Giordano recogió el legado de su maestro Ribera y realizó múltiples cuadros representando filósofos, astrónomos y científicos, a quienes dotó de un cierto aire de misticismo. Entre ellos destaca, por sostener un compás y apoyarlo sobre una esfera, este retrato del filósofo griego Heráclito, también conocido como “el Oscuro” o “el filósofo llorón” por la naturaleza enigmática de su filosofía, su expresión críptica y su concepción pesimista de la humanidad.

"Filósofo dibujando figuras gemétricas con un compás", Luca Giordano. Musée du Louvre (París)

Giordano, conocido desde su infancia por su talento y rapidez de ejecución, -se le llegó a llamar Luca “fa Presto”- manifestó también una especial habilidad en la pintura al fresco, lo que le llevó a recibir numerosos encargos de la corte española. Entre 1692 y 1702, se convirtió en el pintor más relevante del final del reinado del último rey de la Casa de los Austria, Carlos II. El pintor Napolitano (1634- 1705) se enfrentó en el Casón del Buen Retiro a uno de los retos más importante de su carrera, decorar la bóveda del Salón de Embajadores, una superficie de 12 metros de ancho por 20 de largo.

"Pareja de filósofos", Luca Giordano. Museo Nacional del Prado (Madrid)

Giordano se inspiró en sus propias pinturas en busca de temas o figuras que pudiera incluir en el Casón. Así, muchos de los asuntos tratados proceden de obras realizadas por el propio artista antes de su llegada a Madrid, entre ellos, sus filósofos, que coronan los lunetos de la bóveda y sostienen la historia del Mundo acompañados de las nueve musas de las artes y las ciencias.

Astronomía (1649) y Alegoría de la geometría (1649)
De Laurent de la Hyre

"Astronomía", Laurent de la Hyre. Musée des Beaux-Arts (Orléans)

Astronomía y Alegoría de la Geometría son dos obras que pertenecen a una serie de representaciones de las Siete Artes Liberales pintadas por el artista barroco Laurent de la Hyre para decorar una habitación de la casa de París de Gédéon Tallemant, uno de los consejeros del rey Luis XIII. Las siete artes son el trío Gramática, Retórica y Dialéctica, y el cuarteto Aritmética, Música, Geometría y Astronomía, siempre representadas por mujeres, de acuerdo con el género femenino de sus nombres en latín y que se mantiene en todas las lenguas romances. Era muy habitual que estas imágenes decoraran estudios privados y bibliotecas, aunque en el caso de las pinturas de De la Hyre no se conoce con certeza como estaban dispuestas en la sala ya que apenas se han conservado repartidas en varias colecciones.

"Alegoría de la Geometría", Laurent de la Hyre.Toledo Museum of Art (Ohio)

En el caso de sus alegorías de la Geometría y de la Astronomía, ambas aparecen sujetando un compás y acompañadas de una esfera, en la forma de un globo terráqueo y otro celeste respectivamente. En el caso de la joven geómetra sostiene además un papel en su mano derecha en el que aparecen el teorema de Pitágoras y la medición del círculo de Arquímedes. Por su parte, la Astronomía se muestra alada, como si se tratara de un ángel, y con una montaña de libros a su lado; dirige su mirada al cielo mientras su rostro queda iluminado, símbolo de la inspiración. Curiosamente, la relación de Laurent de la Hyre con la ciencia no acaba aquí. Su hijo, Philippe de La Hire, intentó seguir sus pasos en la pintura, sin embargo, acabó convirtiéndose en un reconocido matemático y astrónomo, miembro de la Academia de la Ciencias y director del observatorio de París.

Filósofo y Arquímedes o Demócrito (1630)
De José de Ribera

En el barroco, la representación alegórica de las artes liberales dio paso a los retratos de sabios que eran representados como hombres pobres, humildemente vestidos, cuya única riqueza era su conocimiento y su espíritu modesto. El tenebrista valenciano, asentado en Nápoles, José de Ribera, también llamado Lo Spagnoletto, (“el españolito”), realizó varias pinturas dedicadas a filósofos por encargo del Virrey de Nápoles Don Fernando Atán de Ribera y Enríquez, Duque de Alcalá, hombre de gran aprecio por la cultura y que poseía una gran colección de retratos de filósofos antes del encargo a Ribera. Es muy probable que fuera éste quien aportara al pintor el concepto de la serie de filósofos harapientos. Estos primeros retratos generaron más demanda y otro grupo de filósofos le fue encomendado por el príncipe de Liechtenstein. A partir de estos encargos se hicieron innumerables réplicas e imitaciones. Sin embargo, debido a la multitud de versiones existentes, la ausencia de firma en la mayoría  de los lienzos, la variedad de filósofos retratados y la ausencia de identificación de cada filósofo, hoy en día es difícil conocer la dimensión real de la obra de Ribera.

"Filósofo", José de Ribera. Hermitage (San Petersburgo)

De lo que no hay duda es que la década de 1630 fue la más fructífera para el pintor.  Entre sus series de los filósofos destacan varios por llevar en su mano un compás como símbolo de la relación entre sabiduría y conocimiento científico y matemático. Es el caso de este anciano barbudo que, por la forma en la que sujeta el compás, abierto y con las puntas hacia arriba, sugiere que se trata de un filósofo y no de un geómetra, como estuvo identificado en el pasado. Hay quien piensa que podría tratarse de Aristóteles o Euclides, aunque sigue abierto a la especulación. Valga mencionar que se trata de una copia parcial de otra composición original de mayor formato, con seguridad perdida o destruida, del que sólo se conservan copias repartidas en varia colecciones.

"Arquímedes" (o Demócrito), José de Ribera. Museo Nacional del Prado (Madrid)

La siguiente pintura también ha sufrido diversos cambios de identidad. Por la sonrisa se le ha identificado con Demócrito, el filósofo presocrático fundador del atomismo, también llamado “el filósofo de la risa” ya que consideraba que el estado natural del ánimo del hombre era la apacible alegría. Sin embargo, el compás que sostiene y los folios con trazados relativos a la correspondencia entre el cuadrado y el círculo, parecen indicar el carácter matemático del  filósofo, lo que apunta a que podría tratarse de Arquímedes. Actualmente la primera teoría es la más aceptada, aunque entre los filósofos de Ribera ya existe otro Demócrito también sonriente. Se ha hablado de una posible influencia de Velázquez, durante su viaje a Nápoles en 1630, señalando la semejanza del personaje con los Borrachos (1629). Lo más interesante es que la sencillez de la pintura de Ribera y el gesto risueño e incluso pícaro del personaje contrastan con la tradicional imagen de Arquímedes asesinado por los soldados romanas en el asedio de Siracusa.

Ilustración del artista francés Eduard Vimont (1846-1930). Entre algunos elementos representados, podemos apreciar la esfera armilar que sujeta el solado romano, el compás en el suelo al lado del cadáver de Arquímedes y el diagrama detrás de la silla sobre la relación entre la esfera y el cilindro.

Curiosamente, según una de las versiones  del historiador griego Plutarco sobre la muerte de este personaje, tal vez,  la fatalidad de sostener en su mano algún tipo de instrumento matemático (¿un compás?) pudo confundir al soldado romano y motivar su asesinato, no sin antes pronunciar, como cuenta la leyenda, sus últimas palabras en referencia a la figura que supuestamente estaba estudiando: “No molestes mis círculos”. También el filósofo e historiador romano Cicerón cuenta que se colocaron sobre su tumba, a petición del propio Arquímedes, las esculturas de una esfera y un cilindro en alusión a su descubrimiento de una relación matemática entre estos dos cuerpos geométricos. Para conocer más sobre este personaje, también llamado “el Einstein de la Grecia antigua”, recomiendo el siguiente vídeo que corresponde al capítulo Arquímedes y los griegos de la serie de dibujos animados Érase una vez… los inventores, creada por Albert Barillé, un ejemplo de televisión educativa que consiguió la difícil tarea de trasmitir a los más jóvenes el amor por el conocimiento y la cultura a través del entretenimiento:

Naturaleza y matemáticas

Vídeo realizado por Cristóbal Vila (www.etereaestudios.com) que ilustra la relación entre las formas naturales y las propiedades matemáticas de la serie y espiral de Fibonacci, la proporción y el ángulo áureos, las triangulaciones de Delaunay y las teselaciones de Voronoi.

Matemáticas en el pentagrama

El astrónomo Johannes Kepler formuló las leyes del movimiento planetario basándose en la idea de una armonía musical del Cosmos

El astrónomo Johannes Kepler formuló las leyes del movimiento planetario basándose en la idea de una armonía musical del Cosmos

No se puede ver ni palpar, sin embargo, se siente. La música es una de las manifestaciones artísticas más universales y, a la vez, una de los rasgos más singulares, junto con el habla, del ser humano. Pero el lenguaje musical tiene, también, mucho en común con otro lenguaje que la inteligencia ha inventado para describir la realidad: la ciencia. La música es racionalidad y es una actividad poética y creadora, la unión entre el sonido organizado y la transmisión de emociones. La metáfora perfecta del pensamiento humano.

La ciencia habla de espectros, frecuencias, resonancias, vibraciones y análisis armónico. No es una simple coincidencia, no hay música sin física. El sonido es un fenómeno físico originado por la vibración de los cuerpos y que se trasmite por ondas. A diferencia del ruido, el efecto estético de un sonido depende de la relación lógica y pautada de sus vibraciones. Es decir, que en el fenómeno musical existe una esencia matemática. Y si consideramos la música como una sensación auditiva cuyo propósito es invocar emociones, disciplinas como la fisiología, la psicología, la bioquímica y las neurociencias tienen mucho que decir.

A los griegos da gusto oírles
La correspondencia entre la música y la ciencia se conoce desde hace mucho tiempo.  Probablemente, hacia el siglo VI a.C., en Mesopotamia ya advirtieran las relaciones numéricas entre longitudes de cuerdas. Pero fue en la Grecia antigua cuando se trazaron las diferentes escaleras armónicas basadas en las proporciones numéricas. Para los pitagóricos el Universo era armonía y número. Las notas musicales se correspondían con los cuerpos celestes. Los planetas emitían tonos según las proporciones aritméticas de sus órbitas alrededor de la Tierra. Y los sonidos de cada esfera se combinaban produciendo una sincronía sonora: la “música de las esferas”.

Esta armonía celestial fue descrita por muchos pensadores como Platón, que en La República, relata el mito de Er, un guerrero que en su muerte temporal ve el Universo y describe las órbitas de los planetas. “Encima de cada uno de los círculos iba una Sirena que daba también vueltas y lanzaba una voz siempre del mismo tono; y de todas las voces, que eran ocho, se formaba un acorde”. También Cicerón, en El Sueño de Escipión, explica el fenómeno: “Es el sonido que se produce por el impulso y movimiento de las órbitas, compuesto de intervalos desiguales, pero armonizados (…) Porque tan grandes movimientos no podrían causarse con silencio, y hace la naturaleza que los extremos suenen, unos, graves, y otros, agudos”.

Un Sistema Solar polifónico
La tradición que consideraba al Universo como un gran instrumento musical se prolongará durante la Edad Media y hasta el siglo XVII, cuando aparece la figura de Johannes Kepler. El astrónomo alemán intentó comprender las leyes del movimiento planetario y consideró que éstas debían cumplir las leyes pitagóricas de la armonía. En su libro Harmonices Mundi (1619) ilustra el orden del Universo según los sonidos producidos por las velocidades angulares de cada planeta. Cuanto más rápido era el movimiento, más agudo era el sonido que emitía.

Asumida esta creencia, Kepler escribió seis melodías, cada una correspondiente a un planeta diferente, e instó a los músicos de su época a asimilar su descubrimiento. Escribió: “el movimiento celeste no es otra cosa que una continua canción para varias voces, para ser percibida por el intelecto, no por el oído; una música que, a través de sus discordantes tensiones, a través de sus síncopas y cadencias, progresa hacia cierta predesignada cadencia para seis voces y, mientras tanto, deja sus marcas en el inmensurable flujo del tiempo”.

El Sol lleva la batuta
Las primeras evidencias de música originada en un cuerpo celeste, tal como habían imaginado los pitagóricos primero y Kepler más tarde, no se encontraron hasta hace varias décadas. Las estrellas no emiten melodías armoniosas, pero sí que están sometidas a perturbaciones que provocan una respuesta en forma de ondas. No podemos escuchar el sonido emitido por una estrella, ya que las ondas de sonido necesitan un medio por el que propagarse y el Universo está prácticamente vacío, pero sí podemos observar cómo vibra. Y éste es el ámbito de estudio de la sismología solar, un campo de la astrofísica que desde 1979 investiga en detalle la estructura interna invisible del Sol.

Como un complejo instrumento musical, nuestro astro oscila creando tipos de ondas (modos propios de oscilación) que se propagan por su interior y se reflejan en la superficie deformándola ligeramente, del mismo modo que las olas del mar. Observando esta alteración se pueden descubrir las frecuencias de las ondas que irradian desde su núcleo y deducir, al igual que en una ecografía, las características físicas y los movimientos que se prolongan en el interior. Que nuestro astro tenga ritmo no es una cualidad única, sino que cada estrella, como cada instrumento musical, posee su propio sonido.

El Sol es, también, la repuesta a uno los misterios que la ciencia llevaba años persiguiendo: el excelso sonido del violín Stradivarius. La última teoría sostiene que el secreto está en el “Mínimo de Maunder”, un periodo de escasa actividad solar que entre los siglos XVII y XVIII, cuando se elaboraron los citados violines, provocó un acusado cambio climático. La temperatura en Europa descendió, en lo que se llamó la “Pequeña Edad de Hielo”, causando un lento crecimiento en los árboles y dotando a la madera de unas singulares cualidades sonoras.

Los números dan la nota
Para Leibniz, “la música es un ejercicio de aritmética secreta y el que se entrega a ella ignora que maneja números”. Y Bertrand Russell consideraba que “el matemático puro, como el músico, es creador libre de su mundo de belleza ordenada”. Descartes (Compendio musical), Galileo (Discurso), Mersenne (Armonía Universal), D’Alembert (la solución de la ecuación de ondas) y Euler (Nueva teoría musical), son algunos de los matemáticos que se han preocupado por la elaboración de teorías musicales. Si bien, también se conocen muchos compositores que han aplicado a sus creaciones principios de lógica y probabilidad matemática, como Debussy, Boulez, Messiaen, Varese, Stockhausen o Xenakis, precursores de la música electrónica actual.

Pero la música no solamente ha seducido a los matemáticos. Científicos de muchas disciplinas han recogido sus teorías en composiciones musicales. Como Clark Maxwell, descubridor de la existencia de las ondas electromagnéticas, que compuso una canción titulada “Rigid Body Sings” para explicar de forma cómica la ley de colisión entre los cuerpos rígidos, o el físico Georges Gamow, que en uno de sus libros sobre su simpático personaje de ficción Mr. Tompkins incluyó tres arias para ser cantadas por tres eminentes cosmólogos, Abbé George Lemaître, Fred Hoyle y él mismo, que explicaban diferentes teorías de la creación del Universo.

Con la música a otra parte

Pocos estímulos despiertan una reacción tan emotiva como la música. Esto se debe a que, como cualquier creación del ser humano, es fruto del cerebro. En contra de la creencia popular, emoción y razón están relacionadas. Por ello, han prosperado nuevos campos de estudio, en especial, desde las neurociencias, que analizan la conexión entre el sonido, la emoción y el pensamiento. Y aunque hace 20 años pocos creían que pudiera aportar nada, actualmente es un ámbito de gran interés académico y múltiples aplicaciones, sobre todo, terapéuticas.

Hoy sabemos, que la música y el lenguaje tienen un origen común, ya que a nivel neurológico han evolucionado juntas en los últimos dos millones de años. También conocemos que la música estimula la zona del cerebro que registra el placer, un mecanismo básico para la supervivencia. Y que no todos escuchamos del mismo modo: gracias a imágenes obtenidas por Resonancia Magnética Funcional, se ha observado que la actividad cerebral en un músico es diferente de la de una persona sin formación musical.

Resumiendo, la música es el arte de combinar sonidos armónicamente con el propósito de producir sensaciones. Pero la armonía no es sólo un elemento esencial de la música, sino que ha sido invocada frecuentemente por la ciencia para describir y comprender el mundo. Muchos científicos han confiado en la armonía del Universo y algunos músicos han utilizado la lógica y el cálculo en sus creaciones. La música integra con la ciencia un campo general del pensamiento que nos distingue como humanos. Preguntarnos por ella, es preguntarnos por nosotros mismos.

Artículo publicado en el diario “La Opinión de Tenerife”. (Versión pdf.)

Números y garabatos

Son muchos los ejemplos de cómo los fenómenos científico-técnicos han influido en el arte en distintas épocas. Los descubrimientos en antropología, en matemáticas o la física cuántica, han tenido influencia en algunas corrientes de las artes plásticas. Desde el sistema de perspectiva geométrica utilizado por los artistas renacentistas, hasta la revolución científica de principios del siglo XX que inspiró a las vanguardias artísticas, pasando por las teselaciones del arte islámico, la proporción áurea o la geometría fractal, la evolución de las artes aplicadas no ha sido ajena al conocimiento científico. Sirvan estos casos como ejemplo:

Goethe: el psicólogo del color

Anillo simbólico magnético (1798). J.W. von Goethe

Wolfgang von Goethe (1749-1832) fue un apasionado de la ciencia, aunque esta faceta haya quedado eclipsada por la literaria. Para Goethe, las preocupaciones estéticas y científicas eran una misma cosa. A lo largo de su vida escribió sobre meteorología, botánica, zoología, antropología y geología. Desarrolló una teoría sobre la luz y el color, opuesta a la de Newton, que tuvo escaso éxito desde el punto de vista científico, pero que ejerció una cierta influencia en los comienzos del arte abstracto. Una de sus obras sobre el color, Anillo simbólico magnético (1798), es un cuadro construido con formas de imanes interactuando.

Étienne-Jules Marey: fotógrafo de fluidos

Fencer. Étienne-Jules Marey

Etienne-Jules Marey (1830-1904), fisiólogo, médico, biomecánico e inventor en 1882 de la cronofotografía, base técnica de la cinematografía. Dedicó su vida al estudio del movimiento en todas sus formas: locomoción animal y humana, circulación sanguínea, desplazamientos de objetos o de fluidos, caída de los cuerpos. Los clichés tomados por Marey son imágenes fantásticas que asocian la ciencia al onirismo, la poesía a la técnica, son obras maestras estéticas que pertenecen igualmente a la historia del arte, de la fotografía, de la aeronáutica y de la aerodinámica.

Ernst Haeckel y el paisajismo científico

Art forms in Nature. Ernst Haeckel

Biólogo alemán y ferviente darwinista, las contribuciones de Haeckel (1834-1919) a la zoología fueron una mezcla de investigación y especulación. En 1866 anticipó el hecho de que la clave de los factores hereditarios reside en el núcleo de la célula. Viajó por todo el mundo dibujando especies marinas. Su estudio supera el interés científico. Sus láminas se han expuesto en galerías y editado como catálogos de arte.

Jakson Pollock y los fractales

Jackson Pollock. Foto: Hans Namuth

El análisis computerizado está ayudando a explicar el atractivo de las pinturas de Jackson Pollock (1912-1956). Los famosos goteos y marañas de este artista crean motivos fractales similares a los que árboles y nubes forman en la naturaleza. El análisis de su obra ha ayudado a comprender que existen preferencias visuales por las configuraciones fractales. Sorprendentemente muchos objetos que nos rodean en la naturaleza poseen valores en su configuración fractal situados en el mismo intervalo que sus pinturas.

Los grabados de Escher

Relatividad. M. C. Escher (1953)

Maurits Cornelis Escher (1898-1972) representó conceptos abstractos de las matemáticas a través de metáforas visuales, efectos ópticos y paradojas. Escher conectó arte y matemáticas, y valiéndose de teselas, poliedros, bandas de moebius, nudos y geometrías varias, fue capaz de generar imágenes, formas e ideas de una gran belleza. Inauguró el Op art, uno de los movimientos artísticos que más se relacionan con la investigación científica, al estudiar el color, la influencia de la luz y el movimiento en los cambios cromáticos y su percepción en la retina.

Metzinger, el cubismo y la cuántica

Le Village. Jean Metzinger (1918)

Jean Metzinger (1883-1957) es uno de los más tempranos e influyentes teóricos del cubismo. Estuvo muy interesado en la filosofía de Bergson y las especulaciones sobre las nuevas geometrías (Riemann, Poincaré). Metzinger era un apasionado de las matemáticas y quedó seducido por las explicaciones de Maurice Princet sobre estos asuntos. En 1912 redacta una de las principales fuentes del cubismo, Du Cubisme, una defensa del fundamento matemático de la pintura que quedó liberada de las restricciones de la linealidad. El cubismo podía presentar la realidad desde distintos ángulos. Esta idea se cree que inspiró a Niels Bohr, coleccionista de arte, en su Principio de Complementariedad (1927) que concluyó en la dualidad onda-partícula de la luz y fue base de la ‘Interpretación de Copenhague’ de la mecánica cuántica.

Picasso y la cuarta dimensión

Las señoritas de Avignon. Pablo Picasso (1907)

Pablo Picasso (1881-1973) y Albert Einstein (1879-1955), aunque en ámbitos aparentemente lejanos como el arte y la ciencia, tenían en común la búsqueda de la cuarta dimensión. Ambos estaban preocupados por descubrir la naturaleza del espacio y el tiempo, en particular la naturaleza de la simultaneidad. En 1905 la Teoría de la Relatividad pone de manifiesto la figura del observador y afirma que cada uno tiene su propia visión del mundo. Por su parte Picasso pinta Las señoritas de Avignon (1907), obra que rompió los confines de la perspectiva visual al sintetizar todos los puntos de vista en uno. Se cree que Picasso se inspiró en un libro de geometría de la época en el que encontró la teoría para representar diferentes perspectivas en sucesión.

Kepler y la música del mundo

Mysterium Cosmographicum. Johannes Kepler (1596)

Johannes Kepler (1571-1630) pensaba, en la tradición de los filósofos pitagóricos, que sus leyes debían expresar la armonía musical del cosmos. En su tercera ley, Kepler representó la velocidad angular de cada planeta en un pentagrama musical, la nota más baja correspondía al caso más alejado del Sol y la más alta al más cercano. De hecho, Kepler llegó a componer seis melodías que se correspondían con los seis planetas del Sistema Solar conocidos hasta entonces. Al combinarse, estas melodías podían producir cuatro acordes distintos, siendo uno de ellos el acorde producido al inicio del Universo, y otro de ellos el que sonaría a su término.

El Hombre de Vitruvio. Leonardo da Vinci. 1492

El Hombre de Vitruvio. Leonardo da Vinci (1492)

Leonardo, el sabio total
Leonardo da Vinci (1452 – 1519), uno de los grandes genios del Renacimiento. Buscó el conocimiento en todas sus manifestaciones. Los intereses científicos de Leonardo eran múltiples; la física —representada por la óptica, la mecánica y la hidráulica—, la astronomía, las matemáticas y la geografía; también la biología, con atención principal a la botánica, la fisiología y la anatomía, tanto humana como comparada. Leonardo es también uno de los más grandes artistas de la humanidad; fue el primero en aplicar las leyes de la perspectiva, y creó las técnicas del claroscuro y del esfumato. No deben olvidarse otros intereses, como la música, la fonética, la geología. Leonardo representa la síntesis de la máxima manifestación del espíritu humano, tanto en el arte como en la ciencia y la técnica.

Dalí y la obsesión por la ciencia

La persistencia de la memoria. Salvador Dalí (1931)

El interés de Salvador Dalí (1904-1989) por la ciencia era palpable. Las simbolismos matemáticos ocultos tras la pintura del genio de Figueres, su relación con los pensadores más importantes de su época, como Freud o Einsten, la rigurosa meticulosidad de la geometría en el tratamiento de la perspectiva, son ejemplos de la obsesión del artista por el mundo científico. A través de su obra podemos realizar un recorrido histórico por los acontecimientos científicos del siglo XX. El descubrimiento del ADN, la teoría cuántica, los modelos atómicos o el concepto de antimateria causaron un profundo impacto en Dalí que los utilizó como fuente de inspiración para respaldar sus creaciones.

Duchamp y Poincaré: la geometría no-euclidiana

3 Stoppages Étalon. Marcel Duchamp (1913–14)

El físico y matemático Henri Poincaré (1854-1912), cuestionando la posibilidad de un conocimiento científico objetivo influyó en Marcel Duchamp (1887-1968), artista dadaísta francés, que al leerlo en 1912 inicia un giro en su producción. Duchamp estudia tratados de perspectiva, geometría y matemáticas, y crea un sistema casi científico para incorporar efectos casuales a su obra. En Trois stoppages étalon (1913-14), crea a partir del azar un conjunto de tres hilos de menos de un metro acompañados de sus tres reglas para mostrar que todas las medidas son artificiales. Duchamp produce una matemática ficticia: adopta el rigor del pensamiento científico, pero unido con la indeterminación del azar, como ironía sobre la pretensión de absoluto de la ciencia. Su obra influyó fuertemente en el arte del siglo XX.

Renaissance teams

Cosmic Voyage. Donna J. Cox IMAX

Término creado por Donna J. Cox, del National Center for Supercomputing Application (NCSA), en 1986, para describir la colaboración entre especialistas y artistas a la hora de resolver problemas en el campo de la visualización de datos científicos. La visualización científica implica la traducción mediante un procedimiento informático de valores numéricos en gráficos según una pauta temporal. El artista participa en las distintas fases del proceso; en el diseño, la colaboración, la secuenciación y la edición de las imágenes.

Versión .pdf del artículo publicado en La Opinión de Tenerife